Influence Ytrio Percentage On Monolithic Zirconia Properties: Literature Review Influência Do Percentual De Ítrio Nas Propriedades Da Zircônia Monolítica: Revisão De Literatura
Main Article Content
Abstract
The main disadvantage of conventional zirconia is its high opacity. Depending on different conditions, especially the content of the yttrium stabilizer, it is possible to circumvent this issue, in view of this, several generations of yttrium stabilized zirconia were developed seeking to combine the robustness of zirconia with the aesthetics of porcelain veneers. The present work aimed to carry out an analysis on how the increase or decrease in the percentage of yttrium in the composition of monolithic zirconia can influence their properties, especially with regard to translucency. This study was carried out through a review in the Scielo, PubMed and Google Scholar databases with articles published between 2008 and 2021. In this way, it was concluded that the higher content of Y2O3 tended to increase the amount of isotropic cubic phase present and reduce the amount of birefringent tetragonal phase in ZrO2 together with a minimization of light scattering by secondary phases, leading to increased translucency and aging resistance. As yttrium oxide increases, zirconia grain sizes tend to increase as well, and translucency may improve with increasing grain size. Toughness and fracture toughness can be sacrificed considerably
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
2019; 122: 396–403, http://dx.doi.org/10.1016/j.prosdent.2019.02.005. 4. Liu C, Eser A, Albrecht T, Stournari V, Felder M, Heintze S, et al. Strength characterization and lifetime prediction of dental ceramic materials. Dental Mater. 2021; 37(1):94– 105, https://doi.org/10.1016/j.dental.2020.10.015. 5. Warreth A, Elkareimi Y. All-ceramic restorations: a review of literature. Saudi Dent J. 2020; 32(8): 365-372, https:// doi.org/10.1016/j.sdentj.2020.05.004. 6. Bucevac D, Kosmac T, Kocjan A. The influence ofyttrium-segregation-dependent phase partitioning andresidual stresses on the aging and fracture behaviour of 3Y-TZP ceramics. Acta Biomater. 2017; 62: 306–16, http://dx.doi. org/10.1016/j.actbio.2017.08.014. 7. Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn Dent Sci Rev. 2020; 56(1):1–23, https://doi.org/10.1016/j.jdsr.2019.09.002. 8. Fonseca, YR. Modelagem Não Paramétrica Das Propriedades Da Zircônia [dissertation]. Rio de Janeiro: Ministério Da Defesa Exército Brasileiro Departamento De Ciência E Tecnologia Instituto Militar De Engenharia. 2019. 86p. 9. Grambow J, Wille S, Kern M. Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ. J Mech Behav Biomed Mater. 2021;120:104586, https://doi. org/10.1016/j.jmbbm.2021.104586. 10. Borges MAP, Alves MR, dos Santos HES, dos Anjos MJ, Elias CN. Oral degradation of Y-TZP ceramics. Ceram Int. 2019; 45(8):9955–61. https://doi.org/10.1016/j.ceramint.2019.02.038. 11. Jerman E, Wiedenmann F, Eichberger M, Reichert A,Stawarczyk B. Effect of high-speed sintering on the flexuralstrength of hydrothermal and thermo-mechanically agedzirconia materials. Dent Mater. 2020; 36:1144–50, http:// dx.doi.org/10.1016/j.dental.2020.05.013 12. Zhang F, Spies BC, Vleugels J, Reveron H, Wesemann, C, Müller W-D, Van meerbeek B, Chevalier J. High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly. Dent Mater. 2019; 35(12):1776– 1790. https://doi.org/10.1016/j.dental.2019.10.009 13. Melo ASM. Caracterização Microestrutural da Zircônia Micro e Nanoparticulada e Análise das Propriedades Mecânicas de Próteses Usinadas em CAD/CAM [dissertation]. Rio de Janeiro: Ministério da Defesa Exército Brasileiro Departamento de Ciência e Tecnologia Instituto Militar de Engenharia. 2019. 90p. 14. Pekkan G, Pekkan K, Bayindir BÇ, Özcan M, Karasu B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent Mater J. 2019; 39(1): 1-8. https://doi.org/10.4012/ dmj.2019-098 15. Gracis S, Thompson V, Ferencz J, Silva N, Bonfante E. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int J Prosthodont. 2016;28(3):227–35, https://doi.org/10.11607/ijp.4244. 16. Zhang F, Van Meerbeek B, Vleugels J. Importance of tetragonal phase in high-translucent partially stabilized zirconia for dental restorations. Dent Mater. 2020;36(4):491– 500, https://doi.org/10.1016/j.dental.2020.01.017.
Revista Naval de Odontologia - 2022 - Volume 49 Número 238
17. Santos HES, Propriedades Ópticas e Mecânicas da Zircônia (Y-Tzp) de Translucidez Melhorada com e sem a Adição de Fe2o3 [dissertation]. Rio de Janeiro: Ministério da Defesa Exército Brasileiro Departamento de Ciência e Tecnologia Instituto Militar de Engenharia. 2017. 222p. 18. Shin H-S, Lee J-S. Comparison of surface topography and roughness in different yttrium oxide compositions of dental zirconia after grinding and polishing. J Adv Prosthodont. 2021;13(4):258. https://doi.org/10.4047%2Fjap.2021.13.4.258 19. Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD, Batista AUD, Zhang Y, Paskocimas CA, Bottino MA, de Assunção E Souza RO. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater. 2020;36:e126-39. https://doi.org/10.1016/j.dental.2020.01.004 20. Belo YD, Sonza QN, Borba M, Bona AD. Zircônia tetragonal estabilizada por ítria: comportamento mecânico, adesão e longevidade clínica. Cerâmica. 2013; 59 (352): 6339 https://doi.org/10.1590/S0366-69132013000400021. 21. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013; 17: 269-74 https://doi.org/10.1007/ s00784-012-0692-6 22. Bispo LB. Cerâmicas odontológicas: vantagens e limitações da zircônia. Rev Bras Odontol. 2015; 72 (1/2):24-9. 23. Miragaya LM, Guimarães RB, Souza ROA e, Santos Botelho G dos, Antunes Guimarães JG, da Silva EM. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics. J Mech Behav Biomed Mater. 2017; 72:14–21, https://doi.org/10.1016/j.jmbbm.2017.04.014.
24. Keuper M, Berthold C, Nickel KG. Long-time aging in 3 mol.%yttria-stabilized tetragonal zirconia polycrystals at humanbody temperature. Acta Biomater 2014;10:951– 9,http://dx.doi.org/10.1016/j.actbio.2013.09.033 25. Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J dent Res. 2018; 97(2):140–7, https://doi. org/10.1177/0022034517737483. 26. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016; 32(12):e327–337, https://doi. org/10.1016/j.dental.2016.09.025. 27. Cotic J, Kocjan A, Panchevska S, Kosmac T, Jevnikar P. In vivo ageing of zirconia dental ceramics — Part II: highly-translucent and rapid-sintered 3y-tzp. Dent Mater. 2021; 37(3):454–463. https://doi.org/10.1016/j.dental.2020.11.019. 28. Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2018; 85:57–65, https://doi. org/10.1016/j.jmbbm.2018.05.029 29. Harada A, Shishido S, Barkarmo S, Inagaki R, Kanno T, Örtengren U, et al. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5 mol% yttria. J Mech Behav Biomed Mater. 2020; 111:103974, http://dx.doi.org/10.1016/j.jmbbm.2020.103974. 30. Pandoleon P, Kontonasaki E, Kantiranis N, Pliatsikas N, Patsalas P, Papadopoulou L, et al. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent Mater.. 2017; 33(11):385–392, https://doi.org/10.1016/j.dental.2017.07.011.