Alveolar Ridge Augmentation with Custom 3d-printed Block Graft: Case Report Alveolar Ridge Augmentation with Custom 3d-printed Block Graft: Case Report

Main Article Content

Camilla Alves Janott Sarlo
Kamila Rodrigues do Valle Temponi
Júlia Cardoso Santos Alvarenga
Juliana Fiaux Campanelle Ribeiro Borges
Alexandre Campos Montenegro
Gonçalo Sobreiro Pimentel Neto

Abstract

The use of the technology CAD/CAM (computer aided design/computer aided manufacturing) and 3D (three dimensional) to alveolar reconstructions in implant dentistry allows detailed preoperative planning, the design of the desired grafting result, and the virtual evaluation of the result in relation to the prosthetic reconstruction. This paper aims to details the synthetic bone graft made through this technology, followed by the installation of osseointegrated implants and prosthetic rehabilitation in a bone imperfection in the jaw. A 22-year-old man attended the clinic due to a tooth avulsion of the four lower incisors with significant vertical bone loss of alveolar ridge. Because of the extensive bone loss, it was made a prototyped printed block graft. The intraoral scan and the generated image files were sent to the virtual planning center. First, it was necessary a surgery to install the block graft. After the healing process, it was made a surgery to put two osseointegrated implants. Three months later, temporary fixed prostheses on implants were made to conditioning the peri-implant soft tissues and the progressive loading of the implants. The increase of the alveolar ridge using personalized printed block graft was presented as a technique with numerous advantages, since it does not require a donor site, reduces the surgical time and presents perfect adaptation of the block to the bone imperfection, resulting in a less postoperative morbidity. This technique is indicated to cases of severe bone imperfections, aims to optimize results, and provide less discomfort to the patient.

Article Details

How to Cite
Alves Janott Sarlo, C., Rodrigues do Valle Temponi, K., Cardoso Santos Alvarenga, J., Fiaux Campanelle Ribeiro Borges, J., Campos Montenegro, A., & Sobreiro Pimentel Neto, G. (2023). Alveolar Ridge Augmentation with Custom 3d-printed Block Graft: Case Report. Naval Dental Jounal, 50(2), 22-30. https://doi.org/10.22491/25149.50-2-3
Section
Case Reports

References

1. Wang HL, Boyapati L. “PASS” principles for predictable bone regeneration. Implant Dent. 2006; 15:8–17.
2. Susin C, Wikesjö UM. Regenerative periodontal therapy: 30 years of lessons learned and unlearned. Periodontol. 2000;2013; 62:232–42.
3. Wikesjö UM, Selvig KA, Zimmerman G, Nilvéus R. Periodontal repair in dogs: Healing in experimentally created chronic periodontal defects. J Periodontol. 1991; 62:258–63.
4. Monje A, Chan HL, Galindo-Moreno P, et al. Alveolar bone architecture: A systematic review and meta-analysis. J Periodontol. 2015; 86:1231–48.
5. Yen HH, Stathopoulou PG. CAD/CAM and 3D-Printing Applications for Alveolar Ridge Augmentation. Curr Oral Health Rep. 2018 Jun;5(2):127-32.
6. Arora S, Lamba AK, Faraz F, Tandon S, Ahad A. Role of cone beam computed tomography in rehabilitation of a traumatised deficient maxillary alveolar ridge using symphyseal block graft placement. Case Rep Dent. 2013; 2013:748405.
7. Laino L, Iezzi G, Piattelli A, Lo Muzio L, Cicciù M. Vertical ridge augmentation of the atrophic posterior mandible with sandwich technique: bone block from the chin area versus corticocancellous bone block allograft--clinical and histological prospective randomized controlled study. Biomed Res Int. 2014; 2014:982104.
8. Benic GI, Hämmerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontol 2000. 2014 Oct;66(1):13-40.
9. Sammartino G, Cerone V, Gasparro R, Riccitiello F, Trosino O. The platform switching approach to optimize split crest technique. Case Rep Dent. 2014; 2014:850470.
10. Pfaff MJ, Metzler P, Kim Y, Steinbacher DM. Mandibular volumetric increase following distraction osteogenesis. J Plast Reconstr Aesthet Surg. 2014 Sep;67(9):1209-14.
11. Al-Nawas B, Schiegnitz E. Augmentation procedures using bone substitute materials or autogenous bone - a systematic review and meta-analysis. Eur J Oral Implantol. 2014 Summer;7 Suppl 2:S219-34.
12. Li J, Zhang L, Lv S, Li S, Wang N, Zhang Z. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. J Biotechnol. 2011 Jan 10;151(1):87-93.
13. Figliuzzi M, Mangano FG, Fortunato L, De Fazio R, Macchi A, Iezzi G, Piattelli A, Mangano C. Vertical ridge augmentation of the atrophic posterior mandible with custom-made, computer-aided design/computer-aided manufacturing porous hydroxyapatite scaffolds. J Craniofac Surg. 2013 May;24(3):856-9. 
14. Antonio Barra Torres – ANVISA. Resolução da Diretoria colegiada - RDC 548 de 30 de agosto de 2021. ANVISA; 2021.
15. Plonka AB, Urban IA, Wang HL. Decision Tree for Vertical Ridge Augmentation. Int J Periodontics Restorative Dent. 2018 Mar/Apr;38(2):269-75.
16. Tamimi F, Torres J, Al-Abedalla K, Lopez-Cabarcos E, Alkhraisat MH, Bassett DC, Gbureck U, Barralet JE. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials. 2014 Jul;35(21):5436-45.
17. Laino L, Iezzi G, Piattelli A, Lo Muzio L, Cicciù M. Vertical ridge augmentation of the atrophic posterior mandible with sandwich technique: bone block from the chin area versus corticocancellous bone block allograft--clinical and histological prospective randomized controlled study. Biomed Res Int. 2014; 2014:982104.
18. Li J, Xuan F, Choi BH, Jeong SM. Minimally invasive ridge augmentation using xenogenous bone blocks in an atrophied posterior mandible: a clinical and histological study. Implant Dent. 2013 Apr;22(2):112-6.
19. Mangano FG, Zecca P, Luongo F, Iezzi G, Mangano C. Single-tooth morse taper connection implant placed in grafted site of the anterior maxilla: clinical and radiographic evaluation. Case Rep Dent. 2014;2014:183872.
20. Tarsitano A, Mazzoni S, Cipriani R, Scotti R, Marchetti C, Ciocca L. The CAD-CAM technique for mandibular reconstruction: an 18 patients oncological case-series. J Craniomaxillofac Surg. 2014 Oct;42(7):1460-4.
21. Fishman JA, Greenwald MA, Grossi PA. Transmission of infection with human allografts: essential considerations in donor screening. Clin Infect Dis. 2012 Sep;55(5):720-7.
 22. Kim Y, Nowzari H, Rich SK. Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review. Clin Implant Dent Relat Res. 2013 Oct;15(5):645-53.
23. Chen TH, Ghayor C, Siegenthaler B, Schuler F, Ruegg J, De Wild M, et al. Lattice microarchitecture for bone tissue engineering from calcium phosphate compared to titanium. Tissue Eng - Part A. 2018; 24:1554–61.
24. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 1997; 18:1037–41.
25. Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biomaterials. 2005; 26:5600–8.
26. Zerbo IR, Bronckers ALJJ, De LG, Burger EH. Localisation of osteogenic and osteoclastic cells in porous β-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials. 2005; 26:1445–51.
27. Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res - Part A. 2011;98 A:488–98.
28. Bohner M, Baroud G, Bernstein A, Döbelin N, Galea L, Hesse B, et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes. MaterToday. 2017; 20:106–15.
29. Cosma SC, Matei S, Vilau C. Medical manufacturing innovations. Balneo Res J. 2015; 6:20–31.
30. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015; 8:932–58.
31. Garagiola U, Grigolato R, Soldo R, Bacchini M, Bassi G, Roncucci R, et al. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report. Maxillofac. Plast Reconstr Surg. 2016:38.
32. Lee S, Choi D, Shim JH, Nam W. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Sci Rep. 2020; 10:4979.
33. Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials. 2013 Sep;34(28):6706-16.
34. Nevins M, Nevins ML, Schupbach P, Kim SW, Lin Z, Kim DM. A prospective, randomized controlled preclinical trial to evaluate different formulations of biphasic calcium phosphate in combination with a hydroxyapatite collagen membrane to reconstruct deficient alveolar ridges. J Oral Implantol. 2013 Apr;39(2):133-9.
35. Mangano C, Perrotti V, Shibli JA, Mangano F, Ricci L, Piattelli A, Iezzi G. Maxillary sinus grafting with biphasic calcium phosphate ceramics: clinical and histologic evaluation in man. Int J Oral Maxillofac Implants. 2013 Jan-Feb;28(1):51-6.
36. Mangano C, Sinjari B, Shibli JA, Mangano F, Hamisch S, Piattelli A, Perrotti V, Iezzi G. A Human Clinical, Histological, Histomorphometrical, and Radiographical Study on Biphasic HA-Beta-TCP 30/70 in Maxillary Sinus Augmentation. Clin Implant Dent Relat Res. 2015 Jun;17(3):610-8.
37. Jacotti M, Barausse C, Felice P. Posterior atrophic mandible rehabilitation with onlay allograft created with CAD-CAM procedure: a case report. Implant Dent. 2014 Feb;23(1):22-8.
38. Mangano F, Macchi A, Shibli JA, Luongo G, Iezzi G, Piattelli A, Caprioglio A, Mangano C. Maxillary ridge augmentation with custom-made CAD/CAM scaffolds. A 1-year prospective study on 10 patients. J Oral Implantol. 2014 Oct;40(5):561-9.
39. Dohan Ehrenfest DM, Del Corso M, Diss A, Mouhyi J, Charrier JB. Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane. J Periodontol. 2010 Apr;81(4):546-55. DOI: https://doi.org/ 10.1902/jop.2009.090531. PMID: 20373539.
40. Dohan Ehrenfest DM, Pinto NR, Pereda A, Jiménez P, Corso MD, Kang BS, Nally M, Lanata N, Wang HL, Quirynen M. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets. 2018 Mar;29(2):171-184. DOI: https://doi.org/ 10.1080/09537104.2017.1293812. Epub 2017 Apr 24. PMID: 28437133.
41. Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol. 2013 Aug;84(8):1180-90.
42. Anitua E, Sánchez M, Orive G, Andía I. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials. 2007 Nov;28(31):4551-60.
43. Rustemeyer J, Busch A, Sari-Rieger A. Application of computer-aided designed/computer-aided manufactured techniques in reconstructing maxillofacial bony structures. Oral Maxillofac Surg. 2014 Dec;18(4):471-6.
44. de Almeida Malzoni CM, Gonçalves V, Possari J, Junior EM. The use of 3D ceramic block graft compared with autogenous block graft for rehabilitation of the atrophic maxilla: a randomized controlled clinical trial. Trials. 2022 Oct 23;23(1):903.

Most read articles by the same author(s)