Contribution of Digital Technology to the Surgical Technique of Miniscrew Insertion: A Literature Review Contribuição da Tecnologia Digital para a Técnica Cirúrgica de Inserção de Mini-Implantes: Uma Revisão de Literatura
Conteúdo do artigo principal
Resumo
Mini-implantes ortodônticos são usados para obter uma ancoragem segura. Sua técnica de inserção é simples, mas deve ser precisa para evitar complicações intra e pós-operatórias. Este estudo teve como objetivo revisar a literatura sobre o papel da tecnologia digital na colocação precisa de mini-implantes e descrever as diferentes etapas da cadeia de fabricação do guia de inserção. As bases de dados utilizadas foram PubMed, Science Direct e Google Scholar, incluindo os seguintes descritores em inglês: “Orthodontic Anchorage Procedures”, “Cone Beam Computed Tomography”. A tecnologia digital melhora a precisão da colocação dos mini-implantes usando imagens 3D para avaliar a quantidade e qualidade do osso e a proximidade das estruturas anatômicas na área a ser implantada. Ao combinar imagens 3D com as novas técnicas de impressão 3D e planejamento virtual, o ortodontista pode obter um guia de posicionamento personalizado para o paciente usando técnicas de design e fabricação auxiliadas por computador. Um sistema de inserção de mini-implantes assistido digitalmente é uma técnica promissora, mas não pode ser usado rotineiramente. Portanto, são necessários estudos em larga escala para mapear a inserção dos mini-implantes em diferentes áreas, considerando etnia, gênero e diferentes características anatômicas.
Detalhes do artigo
Como Citar
Referências
2. Lo Giudice A, Rustico L, Campagna P, Portelli M, Nucera R. The digitally assisted miniscrew insertion system: A simple and versatile workflow. J Clin Orthod. 2022;56(7):402-412.
3. Liang W. Application of surgical guide for pre-drilling for the successful placement of orthodontic mini-screws using CAD/CAM technology in two cases. J Orthod. 2023;50(2):243-251.
4. Pozzan L, Migliorati M, Dinelli L, Riatti R, Torelli L, Di Lenarda R et al. accuracy of the digital workflow for guided insertion of orthodontic palatal tads: a step-by-step 3d analysis. Progorthod. 2022; 23: 27.
5. Ludwig B, Glasl B, Jay Bowman S, Wilmes B, Kinzinger G S.M, Lisson J.A. overview anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod. 2011 Aug;45(8):433-41; quiz 467.
6. Lesage ch. Mini-vis en orthodontie : apport du cône beam 3d à la technique chirurgicale. Revodontstomat. 2011;40:293-302
7. Nucera R, Ciancio E, Maino G, Barbera S, Imbesi E, Bellocchio AM. Evaluation of bone depth, cortical bone, and mucosa thickness of palatal posterior supra-alveolar insertion site for miniscrew placement. Prog Orthod. 2022 6;23(1):18.
8. Tepedino M, Cattaneo P.M, Niu X, Cornelis M.A. Interradicular sites and cortical bone thickness for miniscrew insertion: a systematic review with meta-analysis. Am J Orthod Dentofacial Orthop. 2020;158(6):783-798.e20.
9. Murugesan A, Sivakumar A. Comparison of bone thickness in infrazygomatic crest area at various miniscrew insertion angles in Dravidian population - A cone beam computed tomography study. Int Orthod. 2020;18(1):105-114.
10. Negrisoli S, Angelieri F, Gonçalves JR, Pereira da Silva HD, Maltagliati LV, Raphaelli Nahás-Scocate AC. Assessment of the bone thickness of the palate on cone-beam computed tomography for placement of miniscrew-assisted rapid palatal expansion appliances. Am J Orthod Dentofacial Orthop. 2022;161(6):849-857.
11. Liu H, Wu X, Yang L, Ding Y. safe zones for miniscrews in maxillary dentition distalization assessed withcone-beam computed tomography. Am J Orthod Dentofacial Ortho. 2017;151(3):500-506.
12. Lim J-E, Lim WH, Chun YS. Quantitative evaluation of cortical bone thickness and root proximity at maxillary interradicular sites for orthodontic mini-implant placement. Clin Anat 2008;21: 486-91. 19.
13. Park HS, Hwangbo ES, Kwon TG. Proper mesiodistal angles for microimplant placement assessed with 3-dimensional computed tomography images. Am J Orthod Dentofacial Orthop 2010;137: 200-6.
14. Nucera R, Ciancio E, Maino G, Barbera S, Imbesi E, Bellocchio A M. Evaluation of bone depth, cortical bone, and mucosa thickness of palatal posterior supra-alveolar insertion site for miniscrew placement. Prog Orthod 2022; 23: 18.
15. Sreenivasagan S, Sivakumar A. 2cbct comparison of buccal shelf bone thickness in adult dravidian population at various sites, depths and angulation - a retrospective study. Int Orthod. 2021; 19(3):471-479.
16. Tavares A, Crusoé-Rebello I-M, and Neves F-S. Tomographic evaluation of infrazygomatic crest for orthodontic anchorage in different vertical and sagittal skeletal patterns. J Clin Exp Dent. 2020;12(11):e1015-20.
17. Antelo OM, Yukio Saga A,Reyes AA, Meira TM, Ignácio SA, Tanaka OM. Simulation of the clinical procedure by digital intraoral palpation of the greatest prominence of the Infrazygomatic crest for mini-implants insertion. Research, Society and Development.2022; 11(5):1-11
18. Küffer M, Drescher D, Becker K. Application of the digital workflow in orofacial orthopedics and orthodontics: printed appliances with skeletal anchorage. Appl. Sci. 2022;12 (3820): 2-13.
19. Tomita Y, Uechi J, Konno M, Sasamoto S, Iijima M, Mizoguchi I. Accuracy of digital models generated by conventional impression/plaster-model methods and intraoral scanning. dental materials journal 2018; 37(4): 628–633
20. Alves da Cunha TM, Da Silva Barbosa I, Palma K K. Orthodontic digital workflow: devices and clinical applications. Dental press j orthod. 2021; 26(6): e21spe6.
21. Akdeniz BS, Çarpar Y, Çarpar KA. Digital three-dimensional planning of orthodontic miniscrew anchorage: a literature review. J exp clin med 2022; 39(1): 269-274.
22. Jariyapongpaiboon P, Chartpitak J, Jitsaard J. The accuracy of computer- aided design and manufacturing surgical-guide for infrazygomatic crest miniscrew placement. Apos trends orthod 2021;11(1):48-55
23. Cantarella D, Savio G, Grigolato L, Zanata P, Berveglieri C, Lo Giudice A et al. New Methodology for the Digital Planning of Micro-Implant-Supported Maxillary Skeletal Expansion. Med Devices (Auckl). 2020; 13: 93–106.
24. Cantarella D, Karanxha L, Zanata P, Moschik C, Torres A, Gianpaolo Savio G et al. Digital Planning and Manufacturing of Maxillary Skeletal Expander for Patients with Thin Palatal Bone. Med Devices (Auckl). 2021; 14: 299–311.
25. Wilmes B. “Appliance First” or “Bone First” for miniscrew assisted rapid palatal expansion? APOS Trends Orthod. 2022;12:3-6.
26. Kniha K, Brandt M, Bock A, Modabber A, Prescher A, Hölzle F, Danesh G, Möhlhenrich S C. Accuracy of fully guided orthodontic mini-implant placement evaluated by cone-beam computed tomography: a study involving human cadaver heads. Clin Oral Investig. 2021;25(3):1299-1306.
27. Jedli ´nski M, Janiszewska-Olszowska J, Mazur M, Ottolenghi L, Grocholewicz K, Galluccio G. Guided insertion of temporary anchorage device in form of orthodontic titanium miniscrews with customized 3d templates—a systematic review with meta-analysis of clinical studies. Coatings. 2021;11(1488): 1-16
28. Watanabe H, Deguchi T, Hasegawa M, Ito M, Kim S, Takano-Yamamoto T. Orthodontic miniscrew failure rate and root proximity, insertion angle, bone contact length, and bone density. Orthod Craniofac Res. 2013 Feb;16(1):44-55.
29. Kalra S, Tripathi T, Rai P, Kanase A. Evaluation of orthodontic mini-implant placement: a CBCT study. Prog Ortho.2014; 15(1): 61.
30. Jung BA, Wehrbein H, Heuser L, Kunkel M.Vertical palatal bone dimensions on lateral cephalometry and cone-beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res. 2011; 22(6):664-8.
31. Escobar-Correa N, Ramírez-Bustamante MA, Sánchez-Uribe L A, Upegui- Zea JA, Vergara-Villarreal P, Ramírez-Ossa DM. Evaluation of mandibular buccal shelf characteristics in the Colombian population: A cone-beam computed tomography study.Korean J Orthod. 2021;51(1):23-31.
32. Eto VM, Figueiredo NC, Eto LF, Azevedo GM, Vespasiano Silva AI, Andrade I. Bone thickness and height of the buccal shelf area and the mandibular canal position for miniscrew insertion in patients with different vertical facial patterns, age, and sex. Angle Orthod. 2023;93(2):185-194.
33. Kolge NE, Patni VJ, Potnis SS. Tomographic mapping of Buccal Shelf area for optimum placement of bone screws: A three-dimensional cone-beam computed tomography evaluation. APOS Trends Orthod 2019;9(4):241-5
34. Sivakumar A, Prasad AS. ATM technique - A novel radiographic technique to assess the position of Buccal Shelf Implants. Dentomaxillofacial Radiology. 2022; 51(3):2-6
35. Santos AR et al. Assessing bone thickness in the infrazygomatic crest area aiming the orthodontic miniplates positioning: a tomographic study. Dental Press J Orthod. 2017 Jul-Aug; 22(4): 70–76. doi: 10.1590/2177- 6709.22.4.070-076.oar
36. Sun L, Zhang L, Shen G, Wang B, Fang B. Accuracy of cone-beam computed tomography in detecting alveolar bone dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 2015 Mar; 147(3):31323.doi:10.1016/j.ajodo.2014.10.032.
37. Santos AR, Castellucci M, Crusoé-Rebello LM, Costa Sobral M. Accuracy of two orthodontic mini-implant templates in the infrazygomatic crest zone: a prospective cohort study. BMC Oral Health. 2022; 22: 70-76
38. Iodice G, Nanda R, Drago S, Repetto L, Tonoli G, Armando Silvestrini- Biavati, et al. Accuracy of direct insertion of TADs in the anterior palate with respect to a 3D-assisted digital insertion virtual planning. Orthod Craniofac Res. 2021;25(2):192-198.
39. Stefanidaki I, Apostolopoulos K, Fotakidou E,Vasoglou M. Accuracy of miniscrew surgical guides assessed from cone-beam computed tomography and digital models;Am J Orthod Dentofacial Orthop. 2013;143(6):893-901.