1 INTRODUÇÃO

O entendimento do acrônimo A2 e AD é o passo inicial para o entendimento do problema que buscamos resolver nesse artigo acadêmico. O autor Sam Tangredi nos auxilia nesse propósito ao definir os dois acrônimos de forma isolada. As ações tomadas por uma força para prevenir o inimigo de entrar em uma área operacional é chamado de Anti-access (A2) e as ações tomadas por uma força para limitar a sua liberdade de ação na área operacional é chamado de Area-Denial (AD). É comum, habitualmente, usarmos a combinação de ambos os acrônimos como Anti-access e Area-Denial (A2/AD) devido à similaridade destas ações.

Se um Estado decide estabelecer a estratégia de criação de uma zona A2/AD é necessário o estabelecimento de uma rede interdependente de sistemas e ações trabalhando de forma coordenada. Em outras palavras, tal estratégia envolve todo o Poder Nacional do Estado. Desta forma, forças militares das três Forças precisam trabalhar de forma coordenada. Naturalmente, no ambiente marítimo, a Marinha representa o seu principal esforço. Além disso, dentro da Marinha, a Força de Submarinos é reconhecida por sua capacidade de “negar o uso do mar ao inimigo”. Vamos concluir, no decorrer deste artigo, que para capacitar uma Força de Submarinos para estabelecer de forma eficaz zonas A2/AD no ambiente marítimo, esta Força deve ser capaz de operar Submarinos Convencionais (SSK), Submarinos Nucleares de Ataque (SSN) e Controlar Véculos Submarinos não tripulados (UUV) em ambos os tipos de submarinos.

Este artigo apresentará evidências de que, não somente, ambos os tipos de submarinos são necessários como tais submarinos devem ter a capacidade de operar UUV para estabelecer de forma eficaz zonas A2/AD em qualquer área marítima do planeta Terra.

2 CAPACIDADES E EFETIVIDADE DOS SUBMARINOS

Desde a criação do “Turtle” em 1776 por David Bushnell, após diversos avanços tecnológicos os submarinos contemporâneos passaram a possuir seis grandes capacidades:

2 Tangredi, 50
3 “Turtle” foi o primeiro submarino funcional
defender um porto amigo, fustigar⁴ o inimigo, atacar tráfego mercante inimigo, atacar navios militares do inimigo, projetar poder naval sobre terra e garantir destruição mútua⁵.

A efetividade de um submarino em operações navais depende de três características: uma grande probabilidade de destruição dos alvos no primeiro ataque, surpresa e sua furtividade natural quando submersos⁶. Primeiro, a importância de destruir os alvos no primeiro ataque, normalmente com torpedos, advém do fato que após o lançamento do seu armamento o ruído gerado pelo submarino aumenta consideravelmente. Se o inimigo apenas suspeitava da existência do submarino; tal suspeita se tornará uma certeza após o lançamento do armamento⁷. Desta forma é necessário grande confiança nos torpedos utilizados pelo submarino. Apesar dos SSN serem plataformas mais modernas na guerra naval, os SSK podem também utilizar torpedos modernos como seu armamento principal. Por exemplo, os submarinos brasileiros da Classe Tupi podem lançar modernos torpedos americanos MK-48 modificados. Segundo, a surpresa depende da capacidade do submarino atacar antes de ser detectado pelo inimigo. Isto pode ser conseguido tanto pelos SSN quanto pelos SSK pois ambos são muito difíceis de serem detectados quando não estão lançando seus torpedos⁸. Terceiro, ao contrário das outras características, no caso da furtividade, existem fundamentais diferenças entre os SSN e os SSK. Enquanto os SSN navegam submersos, na maior parte do tempo, utilizando suas baterias, o que já foi provado serem muito difíceis de serem detectados; eles precisam sistematicamente posicionar-se próximos da superfície, na Cota Periscópica (CP), para recarregar suas baterias (procedimento de esnórquel). Durante o procedimento de esnórquel, seu ruído irradiado aumenta consideravelmente pois precisam utilizar ruidosos motores a diesel. Desta forma eles ficam mais vulneráveis a detecção⁹. Por outro lado, um dos grandes avanços dos modernos SSK é uma modificação denominada: Propulsão Independente do Ar (AIP). Um SSK capaz de utilizar a propulsão AIP reduz drasticamente a necessidade de retornar a CP para realizar o procedimento de esnórquel¹⁰. Entretanto os SSN podem viajar submersos indenfimamente com energia infindável gerada a partir dos seus reatores nucleares. Todavia tal vantagem cobra o seu preço: os SSN geram ruído contínuo proveniente da sua planta nuclear e de vapor¹¹.

3 ÁGUAS AZUIS¹² E MARRONS¹³: O AMBIENTE MARÍTIMO

Toda campanha militar que envolve o estabelecimento de uma área de A2/AD será, invariavelmente, moldada pela geografia do local¹⁴. Operações navais em águas marrons têm

⁴ Neste contexto “Fustigar” foi utilizado a partir da tradução da expressão Naval Attrition
⁶ Lautenschlager, 102
⁷ Lautenschlager, 98
⁸ Lautenschlager, 98
⁹ Clark, Bryan, The emerging era in Undersea Warfare. (Washington, DC: Center of Strategic and Budgetary Assessments, 2015), 5
¹⁰ Clark, 7
¹¹ Clark, 5
¹² Neste contexto, “água azuis” refere-se a mar aberto, afastado da costa
¹³ Neste contexto “água marrons” refere-se a porção do mar próximo a costa
¹⁴ Tangredi, 99
muito em comum com as realizadas em águas azuis. Todavia, a proximidade com a massa da costa, de um tamanho reduzido e, por diversas vezes, limitadas pela profundidade local criam diferenças consideráveis. Ao contrário do que acontece em mar aberto, a proximidade com a costa representa um ambiente único e, por diversas vezes, representa uma área de difícil operação para as marinhas de águas azuis\(^\text{15}\). Logo, para ser capaz de estabelecer de forma eficaz uma área A2/AD utilizando submarinos, como parte de uma grande estratégia, uma Marinha deve ser capaz de fazê-lo nas águas azuis e marrons. Portanto a Força de Submarinos deve ser capaz de operar em águas marrons próximas de sua própria costa, águas azuis, águas azuis controladas pelo inimigo e águas marrons controladas e próximas a costa do inimigo.

Considerando, ainda, que as águas marrons são normalmente localizadas em águas rasas, onde a propagação do som é, normalmente, difícil de prever. Isto se deve às perdas causadas pelos ecos refletidos do leito submarino. Além disso, o tipo de fundo pode variar significativamente de local para local; e isto tem grande influência na propagação do som em águas rasas\(^\text{16}\).

Consequentemente, como podemos deduzir, existem diferenças fundamentais entre operar em águas azuis e marrons. Desta forma, a utilização de um submarino deve levar em consideração não somente as capacidades e efetividade dos submarinos quanto em qual área a Marinha pretende utiliza-lo para o estabelecimento de uma área A2/AD.

4 ÁGUAS AZUIS: O DOMÍNIO DO SUBMARINO NUCLEAR

Os principais desafios para um submarino começam assim que o submarino deixa a base e mergulha: o primeiro é chegar a zona de patrulha (no caso em estudo a área A2/AD estabelecida) sem ser detectado, mantendo a sua furtividade durante o trânsito e o segundo é permanecer na zona de patrulha o maior tempo possível para maximizar a probabilidade de destruir um inimigo que entre em tal área.

A opção pelos SSK para operar em águas azuis é possível. Todavia, quando em procedimento de esnórquel, eles aumentam o seu ruído irradiado. Em outras palavras, sistemáticamente eles ficam muito mais vulneráveis a detecção inimiga\(^\text{17}\). Aeronaves de patrulha marítima, como os P-3C/AIP, possibilitem grande capacidade de vigilância com sensores e armamentos designados para detectar e destruir submarinos inimigos\(^\text{18}\) tornando difícil para os SSK permanecerem na CP por longo tempo sem assumirem um considerável risco de serem detectados. De acordo com o professor Milan Vego, outra consideração é que: apesar de suas capacidades, em termos de raio de ação e taxa de permanência terem aumentado consideravelmente nas últimas décadas\(^\text{19}\), os SSK não podem permanecer indefinidamente nas Zonas de Patrulha.

Com a capacidade aumentada da propulsão AIP a necessidade dos procedimentos de esnórquel são reduzidos em até 80%. Desta forma a probabilidade dos SSK

\(^{16}\) Clark, 5

\(^{17}\) Force Capabilities Handbook. (Newport, RI: Naval War College, 2018), 28

\(^{18}\) Vego, Milan, *Fundamentals of Antisubmarine Warfare.* (Newport, RI: Naval War College, 2016), 2
serem detectados por radares ou sonares é drasticamente reduzida20. Todavia eles ainda são SSK com limitações para permanecerem indefinidamente na Zona de Patrulha.

A opção pela utilização dos SSN para operas nas águas azuis é a mais adequada porque eles não precisam vir à CP para realizar procedimentos de esnórquel; isso os torna muito mais difíceis de serem detectados por radar ou sonar21. Finalmente, os SSN podem ficar muito mais tempo nas suas Zonas de Patrulha – suas limitações advêm apenas da capacidade de estoque de alimentos e do moral da tripulação – pois seu estoque de energia gerados pela planta nuclear é virtualmente infinito. Mesmo quando operando em águas azuis controladas pelo inimigo os SSN são as melhores opções pois podem explorar as grandes profundidades para evitar detecção e utilizar maiores velocidade para se posicionar da melhor forma para o ataque sobressaindo-se no aspecto da mobilidade.

Por exemplo, considere a situação hipotética de uma patrulha durante 30 dias em águas azuis. Se um SSK tem uma taxa de indiscrição22 de 10 por cento do tempo de patrulha para os procedimentos de esnórquel, o equivalente para um SSK (AIP) seria de 2 por cento enquanto para o SSN é virtualmente zero por cento. Isto evidencia como os SSN podem ser muito mais eficazes quando operando em águas azuis do que os SSK.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Submarine-Operation-In-Blue-Waters.png}
\caption{Operação do Submarino em Águas Azuis (considerando 30 dias/720 hrs. de operação)}
\end{figure}

\textbf{Tabela I – Operação do Submarino em Águas Azuis (considerando 30 dias/720 hrs. de operação)}

Alguns poderiam afirmar que os SSK, em seus dois tipos de propulsão, poderiam ser revezados na Zona de Patrulha para manter a sustentabilidade da patrulha. Todavia, existem ainda, duas vantagens consideráveis para os SSN: quando operando em águas azuis podem manter altas velocidades por longos períodos23, ao contrário dos SSK, e possuem enorme capacidade de levar armamentos24. Podemos concluir que, em águas azuis, um SSN é mais eficaz, devido a sua independência da CP, do que a quantidade total de SSK necessários para patrulhar, em regime de revezamento, uma determinada zona de patrulha.

5 \textbf{ÁGUAS MARRONS: O ESCONDERIJO DO SUBMARINO CONVENCIONAL}

Apesar do seu tamanho, modernos SSN podem ser empregados nas confinadas águas próximas ao litoral. Todavia, águas rasas limitam ou mesmo impossibilitam a operação de grandes submarinos na Zona de Patrulha25.

20 Vego, Milan, \textit{Fundamentals of Antisubmarine Warfare}. (Newport, RI: Naval War College, 2016), 2
21 Clark, 5
22 Nesse contexto taxa de indiscrição significa o tempo total que o submarino utiliza qualquer um dos seus mastros acima da superfície dividido pelo tempo de patrulha em porcentagem.
23 Vego, Milan, \textit{Fundamentals of Antisubmarine Warfare}. (Newport, RI: Naval War College, 2016), 2
24 Vego, Milan, \textit{Fundamentals of Antisubmarine Warfare}. (Newport, RI: Naval War College, 2016), 3
25 Vego, Milan, \textit{Joint Operational Warfare – Theory and Practice}. (Newport: Naval War College, 2016), IV 40
e muitas das vantagens observadas pelos SSN nas águas azuis não são relevantes nas águas marrons. Primeiro, devido à necessidade de utilizar o periscópio para manter uma adequada posição os SSN precisam se posicionar próximo a superfície, dessa forma a vantagem de utilizar grandes velocidades não pode ser explorada. Desta forma ele passa a operar taticamente como os SSK, perdendo a vantagem de poder operar afastado permanentemente da CP. Segundo, a planta de vapor e reator nuclear geram considerável ruído contínuo. Isto não é tão relevante quando operando em águas profundas pois o SSN pode ser posicionado em cotas mais profundas todavia em águas rasas isso é uma considerável desvantagem para a sua furtividade. A última consideração é que o SSN tem sua velocidade limitada quando operando em águas rasas mesmo quando não expondo mastros. Esta limitação existe devido à possibilidade de cavitar, pois necessitam aumentar a rotação da hélice próximo a superfície, incrementando, desta forma, a probabilidade de contra-deteção.

A opção pelos SSK é considerada a mais adequada pois eles têm grande manobrabilidade a baixas velocidades, podem permanecer submersos em águas mais rasas, devido ao seu menor calado, e ainda, dependendo da sua configuração de lemes, podem operar muito próximo ao leito do oceano maximizando a profundidade (cota) de operação em águas rasas. Por exemplo, um SSK pequeno necessita de 40 a 50 pés para mergulhar enquanto um mini submarino SSK necessita de 15 a 35 pés. Além disso, se considerarmos um SSK(AIP) pode-se obter todas essas vantagens minimizando o tempo necessário para o procedimento de esnórquel.

Por exemplo, vamos considerar a mesma situação hipotética de uma patrulha de 30 dias mas, nesse caso, em águas marrons. Se um SSK possui uma taxa de indiscrição de 10 por cento do tempo de patrulha para o procedimento de esnórquel, o equivalente SSK(AIP) vai ter uma taxa de 2 por cento e o SSN seria zero. Todavia, devido às águas rasas, todos os submarinos serão forçados a permanecer perto a CP. Desta forma, mesmo sem ter a necessidade de utilizar o mastro do esnórquel, o SSN cometerá indiscrição quando tiver que utilizar o periscópio para segurança da navegação ou outros mastros para qualquer necessidade tática. Assim, a simples comparação somente durante os procedimentos de esnórquel torna-se inválida quando operando próximo a costa.

Alguns poderiam afirmar que os modernos SSN, como os da classe Virginia, possuem inúmeras inovações tecnológicas especialmente elaboradas para as operações próximas ao litoral e que tais SSN poderiam operar sem restrições nas águas marrons. Isto é parcialmente verdade se considerarmos o estabelecimento de uma Zona de Patrulha próxima a sua própria costa. Por outro lado, se o planejamento envolve o estabelecimento de uma Zona de Patrulha próxima a uma área controlada pelo inimigo, com inúmeros sensores na costa, diversas aeronaves de patrulha

26 Vega, Milan, Fundamentals of Antisubmarine Warfare. (Newport, RI: Naval War College, 2016), 2
27 Clark, 5
28 Geração de bolhas próximas as pás do hélice quando utilizando altas velocidades próximos a superfície do mar. Isto gera ruído passível de detecção.
29 Vega, Milan, Fundamentals of Antisubmarine Warfare. (Newport, RI: Naval War College, 2016), 3
30 Vega, Milan, Joint Operational Warfare – Theory and Practice. (Newport, Naval War College, 2016), IV 40
31 Force Capabilities Handbook. (Newport, RI: Naval War College, 2018), 18

Periscópio
A/S operando continuamente próximos a sua posição e SSK inimigos patrulhando a região; a aceitabilidade de posicionar um SSN sem as plenas vantagens táticas que essa plataforma pode usufruir se compararmos com as mesmas vantagens táticas que possui quando operando em águas azuis é consideravelmente reduzida.

6 VEÍCULOS SUBMARINOS NÃO TRIPULADOS: AUMENTANDO A ACEITABILIDADE

Considere a situação em que você precisa estabelecer uma Zona de Patrulha em águas marrons em uma área marítima controlada pelo inimigo nas proximidades da costa dele. Os avanços da tecnologia associadas com a Guerra Anti-Submarino (ASW) e avanços nas plataformas submersas não nucleares permitirão que adversários em potencial estabeleçam sua própria área A2/AD com sistemas de vigilância e sistemas de armas submarinas. Mesmo que os SSN e SSK possam entrar nessas áreas criadas pelo inimigo a aceitabilidade para fazermos isso ficará reduzida de forma significativa.

A capacidade de operar UUV permitirá que submarinos tripulados se posicionem em um local mais seguro enquanto controlando essas unidades para cumprir suas missões. Por exemplo, a Marinha dos Estados Unidos está desenvolvendo o Torpedo muito leve comum (Common Very Lightweight Torpedo – CVLWT) que possui menos que um terço do tamanho dos torpedos utilizados nos submarinos americanos nos dias de hoje. Muitas unidades desse novo armamento poderiam ser carregados em UUVs levando vantagem de sua maior furtividade. Nesse caso o submarino tripulado poderia controlar o lançamento desse armamento de uma distância segura. Mesmo depois do lançamento dos CVLWT as unidades anti-submarino detectariam a posição do UUV e não do submarino tripulado. Isso representaria uma enorme vantagem tática sobre os SSN e SNK que não possuem tal capacidade. Uma consequência é que os submarinos tripulados precisariam ser maiores em um futuro próximo para acomodar UUV especializados como lançadores de despistadores, sensores, vigilância e muitos outros.

Submarinos tripulados irão provavelmente modificar sua atuação no ambiente marítimo. Passarão das unidades táticas da linha de frente, nos dias atuais, para plataformas centralizadoras e coordenadoras que acomodam novas unidades táticas (UUV), em um futuro próximo, assim como os navios aeródromos, que acomodam as aeronaves de asa fixa e rotativa. Essa mudança de papel será muito relevante quando operando em águas marrons próximas a costa e a base do inimigo pois assim a aceitabilidade de sua utilização será incrementada e reduzido o risco de operar submarinos tripulados em áreas confinadas.

Alguns poderiam afirmar que utilizando uma combinação de SSK e SSN poderiam cumprir tais missões mesmo sem a capacidade para operar UUV. Isso é verdade principalmente nas águas azuis ou marrons próximos a nossa própria costa. Todavia se for considerado a rede de batalha potencial próxima a costa do inimigo com a presença de...

32 Clark, 15
33 Clark, 13
34 Clark, 12
35 Clark, 17
sensores passivos e ativos, sistemas baseados em terra com capacidade de lançamento de misseis de cruzeiro armados com torpedos ASW e a possível presença de unidades ASW na área o risco para operar submarinos tripulados para estabelecimento de uma Zona de Patrulha nessa região é enorme. Desta forma, a aceitabilidade de operar submarinos tripulados que possuírem a capacidade de operar UUV é muito maior.

36 Clark, 16

Figura 1 – Rede de Batalha Submarina

37 Clark, 16
7 CONCLUSÕES

O estabelecimento de uma área A2/AD demanda um enorme esforço de todo o Poder Nacional de um Estado. Isto inclui elementos de todas as Forças para atingir o efeito desejado: que o inimigo não entre na área desejada e, mesmo que o inimigo entre, ele não seja capaz de se mover livremente sem ser fustigado pelas nossas forças. Lembrando que o papel da força de submarinos é o de contribuir para o estabelecimento de uma A2/AD pois o ambiente marítimo é apenas uma parte de uma complexa rede que compõe todos os ambientes envolvidos – aéreo, terrestre e marítimo - no estabelecimento de uma A2/AD (principalmente quando pensamos em áreas próximas a nossa costa). Outrossim, ao limitarmos o nosso problema em estudo, se desejarmos que uma Marinha, utilizando a sua Força de Submarinos, seja capaz criar de forma eficaz tal área, no ambiente marítimo, ela deve ser capaz de criar a mesma nas seguintes condições: nas águas marrons próximas a sua própria costa, nas águas azuis, nas águas azuis controladas pelo inimigo e nas águas marrons próximas a costa do inimigo.

No primeiro caso, águas marrons próximas a sua própria costa, é mais adequado a utilização dos SSK pois eles podem utilizar sua vantagem em baixo nível de ruído irradiação. Mesmo que opte-se pelo SSN eles serão subutilizados em virtude de seu maior tamanho, limite de velocidade e ruído gerado pelo submarino.

Nos segundo e terceiro casos, ambos em águas azuis, são as áreas mais adequadas para utilização dos SSN. Por serem plataformas totalmente independentes da superfície, elas são capazes de desenvolver altas velocidades e explorar as águas profundas tornando-se muito difíceis de serem detectadas.

No quarto caso, águas marrons próximas a costa do inimigo, é bastante similar ao primeiro caso. Visto que, seus submarinos tripulados serão expostos a diversos sistemas designados especificamente para detectar e destruir submarinos. Nesse caso, a capacidade de controlar UUVs irá aumentar consideravelmente a aceitabilidade de utilizar tais submarinos pois os mesmos poderão ser posicionados a distâncias maiores da costa do inimigo e, ainda sim, poderão cumprir suas tarefas. Reduzindo, desta forma, a probabilidade de contra-deteção.

É correto afirmar que as Forças de Submarinos que possuam somente os SSK ou os SSN são capazes de cumprir suas tarefas em todos os quatro casos supracitados. Todavia para fazê-los da forma mais eficaz e com maior aceitabilidade possível, o que implica na redução do risco de perda de meios e, principalmente, de vidas humanas em combate, ela deve ser capaz de operar UUV utilizando os dois tipos de submarinos.

Desta forma, para capacitar uma Força de Submarinos para estabelecer de forma eficaz zonas A2/AD no ambiente marítimo, esta Força deve ser capaz de operar Submarinos Convencionais (SSK), Submarinos Nucleares de Ataque (SSN) e Controlar Véculos Submarinos não tripulados (UUV) em ambos os tipos de submarinos.

REFERÊNCIAS BIBLIOGRÁFICAS

