COMPARATIVE ANALYSIS OF THE MECHANICAL PROPERTIES OF TYPE K STAINLESS STEEL MANUAL INSTRUMENTS: A STUDY OF DIFFERENT BRANDS

Main Article Content

Luiza Gonçalves Roma Custódio
Victor Talarico Leal Vieira
Alessandro Rodrigo Maggioni
Karine Padoin
Carlos Nelson Elias
Luana Talarico Leal Vieira Dacome
Guilherme Basile Soares Cabral

Abstract

The present study aimed to compare the geometric and mechanical characteristics of six different brands of type K stainless steel manual instruments. Instruments in sizes 15 and 20 were analyzed, through buckling and torsion resistance tests, following ISO 3630 standards. -1 and ANSI/ADA 101. Micromorphometry evaluated diameters and conicities at specific points (D0 and D3). The results indicated that the TDK 15 and Angelus 0.20 instruments presented greater resistance to buckling, while variations in diameter in D0 were observed mainly in the TDK 15 and Perfect 15 instruments. In relation to torsion, the Maillefer 0.20 instruments stood out due to the greater angular deflection before fracture, suggesting greater flexibility. Thus, the TDK 15 and Angelus 0.20 instruments proved to be more suitable for negotiating atretic canals and endodontic retreatment, however variations in the diameter of the TDK 15 and Perfect 15 instruments may compromise the adaptation of cones during the obturation phase. The Maillefer 0.20 instruments, with greater flexibility, are more suitable for curved canals.

Article Details

How to Cite
Gonçalves Roma Custódio, L., Talarico Leal Vieira, V., Rodrigo Maggioni, A., Padoin, K., Elias, C. N., Talarico Leal Vieira Dacome, L., & Basile Soares Cabral, G. (2024). COMPARATIVE ANALYSIS OF THE MECHANICAL PROPERTIES OF TYPE K STAINLESS STEEL MANUAL INSTRUMENTS: A STUDY OF DIFFERENT BRANDS. Naval Dental Jounal, 51(2), 06-13. https://doi.org/10.69909/1983-7550-endo-1
Section
Original Article

References

1. Darcey J, Taylor C, Roudsari RV, Jawad S, Hunter M. Modern endodontic principles part 3: preparation. Dent Update. 2015;42(9):810–22.
2. Karamifar K, Tondari A, Saghiri MA. Endodontic periapical lesion: an overview on the etiology, diagnosis and current treatment modalities. Eur Endod J. 2020;5(2):54.
3. Allen MJ, Glickman GN, Griggs JA. Comparative analysis of endodontic pathfinders. J Endod. 2007;33(6):723–6.
4. Kwak SW, Ha JH, Lee W, Kim SK, Kim HC. Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation. Restor Dent Endod. 2014;39(4):270–5.
5. Dias DS, Ribeiro GD, Martuche R da S, Antunes H dos S, Vieira VTL, Silva EJNL da. Análise morfométrica e flexão rotativa de instrumentos tipo K de uma empresa nacional. Rev Bras Odontol. 2017;74(2):96–100.
6. Baruwa AO, Chasqueira F, Arantes-Oliveira S, Caramês J, Marques D, Portugal J, et al. Comparative Analysis of Endodontic ISO Size 06, 08, and 10 Stainless Steel K-Files Used for Glide Path Procedures. Dent J. 2024;12(4):98.
7. Lopes HP, Elias CN, Mangelli M, Lopes WS, Amaral G, Souza LC, et al. Buckling resistance of pathfinding endodontic instruments. J Endod. 2012;38(3):402–4.
8. Bhuva B, Ikram O. Complications in endodontics. Prim Dent J. 2020;9(4):52–8.
9. Yilmaz ÖS, Keskin C, Aydemir H. Comparison of the torsional resistance of 4 different glide path instruments. J Endod. 2021;47(6):970–5.
10. Hartmann R, Peters OA, De Figueiredo J, Rossi‐Fedele G. Association of manual or engine‐driven glide path preparation with canal centring and apical transportation: a systematic review. Int Endod J. 2018;51(11):1239–52.
11. Yilmaz ÖS, Keskin C, Aydemir H. Comparison of the torsional resistance of 4 different glide path instruments. J Endod. 2021;47(6):970–5.
12. Kwak SW, Ha JH, Lee W, Kim SK, Kim HC. Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation. Restor Dent Endod. 2014;39(4):270–5.
13. Baruwa AO, Chasqueira F, Arantes-Oliveira S, Caramês J, Marques D, Portugal J, et al. Comparative Analysis of Endodontic 0.15 Stainless-Steel K-Files: Exploring Design, Composition, and Mechanical Performance. Dent J. 2024;12(2):29.
14. Cassim I, Van der Vyver PJ. The importance of glide path preparation in endodontics: a consideration of instruments and literature: scientific. South Afr Dent J. 2013;68(7):322–7.
15. West JD. The endodontic Glidepath:" Secret to rotary safety". Dent Today. 2010;29(9):86–8.
16. Barbosa IB, Ferreira FG, Scelza P, Adeodato C, Caldas IP, Goncalves FP, et al. Structural analysis of NiTi endodontic instruments: A systematic review. Iran Endod J. 2020;15(3):124.
17. Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, Zaccaro Scelza M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J. 2017;50(2):143–52.
18. Lopes HP, Elias CN, Siqueira Jr JF, Soares RG, Souza LC, Oliveira JC, et al. Mechanical behavior of pathfinding endodontic instruments. J Endod. 2012;38(10):1417–21.
19. Plotino G, Nagendrababu V, Bukiet F, Grande NM, Veettil SK, De-Deus G, et al. Influence of negotiation, glide path, and preflaring procedures on root canal shaping—terminology, basic concepts, and a systematic review. J Endod. 2020;46(6):707–29.
20. dos Santos MR da S, Carvalho EP, Lunz JSC, da Silva EJNL, Moreira EJL, Vieira VTL. Correlação do diâmetro do preparo de uma nova geração de instrumentos de NiTi com as dimensões de cones de guta-percha de sua antiga geração através de uma análise morfométrica. Rev Bras Odontol. 2016;73(3):180.
21. Genç Ö, Alaçam T, Kayaoglu G. Evaluation of three instrumentation techniques at the precision of apical stop and apical sealing of obturation. J Appl Oral Sci. 2011;19:350–4.
22. dos Santos MR da S, Carvalho EP, Lunz JSC, da Silva EJNL, Moreira EJL, Vieira VTL. Correlação do diâmetro do preparo de uma nova geração de instrumentos de NiTi com as dimensões de cones de guta-percha de sua antiga geração através de uma análise morfométrica. Rev Bras Odontol. 2016;73(3):180.
23. Rodrigues SS, Ribeiro MRA, Pereira LB, Júnior HM. Avaliação de padrões dimensionais de diferentes marcas comerciais de limas endodônticas manuais tipo KERR. Perquirere. 2021;1(18):134–47.
24. West JD. The endodontic Glidepath:" Secret to rotary safety". Dent Today. 2010;29(9):86–8.
25. Berutti E, Negro AR, Lendini M, Pasqualini D. Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments. J Endod. 2004;30(4):228–30.
26. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod. 2004;30(8):559–67.
27. Patiño PV, Biedma BM, Liébana CR, Cantatore G, Bahillo JG. The influence of a manual glide path on the separation rate of NiTi rotary instruments. J Endod. 2005;31(2):114–6.
28. Lopes W, Vieira V, Silva EL, Silva MD, Alves F, Lopes H, et al. Bending, buckling and torsional resistance of rotary and reciprocating glide path instruments. Int Endod J. 2020;53(12):1689–95.
29. Lopes HP, Elias CN, Mangelli M, Lopes WS, Amaral G, Souza LC, et al. Buckling resistance of pathfinding endodontic instruments. J Endod. 2012;38(3):402–4.
30. Jafarzadeh H, Abbott PV. Ledge formation: review of a great challenge in endodontics. J Endod. 2007;33(10):1155–62.
31. Elsaka S, Elnaghy A, Badr A. Torsional and bending resistance of WaveOne Gold, Reciproc and twisted file adaptive instruments. Int Endod J. 2017;50(11):1077–83.
32. Silva EJNL, Vieira VTL, Hecksher F, dos Santos Oliveira MRS, dos Santos Antunes H, Moreira EJL. Cyclic fatigue using severely curved canals and torsional resistance of thermally treated reciprocating instruments. Clin Oral Investig. 2018;22:2633–8.
33. Lopes HP, Elias CN, Amaral G, Vieira VT, Moreira EJ, Mangelli M, et al. Torsional properties of pathfinding instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology. 2011;112(5):667–70.