Desmistificando o Uso do Dissilicato de Lítio e de Zircônias Estabilizadas na Fase Cúbica em Restaurações Monolíticas: Uma Revisão de Literatura

Conteúdo do artigo principal

Allan Oliveira da Silva
Ilana Santos Ramalho

Resumo

O desenvolvimento e a popularização de técnicas operatórias associadas aos materiais odontológicos propiciaram a transformação das condições de saúde bucal em reabilitações estéticas. O objetivo deste estudo foi revisar a literatura acerca da utilização do dissilicato de lítio e de zircônias estabilizadas na fase cúbica em restaurações monolíticas. As bases de dados utilizadas foram Lilacs, Pubmed/Medline, Scielo e ScienceDirect, cruzando os seguintes descritores em língua inglesa: “Zirconium”, “Yttrium”, “CAD-CAM”, “Ceramics”, “Dental Porcelain” e “Material Resistance”. As técnicas restauradoras indiretas monolíticas com as cerâmicas odontológicas atreladas ao uso da tecnologia CAD/CAM possuem diversas vantagens a curto e a longo prazo. O dissilicato de lítio e as zircônias de alta translucidez estabilizadas na fase cúbica são materiais atuais e de constante evolução na pesquisa odontológica devido ao seu comportamento mecânico, biológico, aspectos ópticos e estéticos, garantindo seu uso como materiais de excelência nas reabilitações estético-funcionais.

Detalhes do artigo

Como Citar
Desmistificando o Uso do Dissilicato de Lítio e de Zircônias Estabilizadas na Fase Cúbica em Restaurações Monolíticas: Uma Revisão de Literatura. (2023). Revista Naval De Odontologia, 50(1), 27-33. https://doi.org/10.29327/25149.50.1-5
Seção
Revisões de Literatura
Biografia do Autor

Allan Oliveira da Silva, Departamento de Materiais Dentários e Prótese, Faculdade de Odontologia de Ribeirão Preto – FORP/USP, Brasil

Departamento de Materiais Dentários e Prótese, Faculdade de Odontologia de Ribeirão Preto – FORP/USP, Brasil

Ilana Santos Ramalho, Faculdade do Centro Oeste Paulista – FACOP, Brasil

Faculdade do Centro Oeste Paulista – FACOP, Brasil

Como Citar

Desmistificando o Uso do Dissilicato de Lítio e de Zircônias Estabilizadas na Fase Cúbica em Restaurações Monolíticas: Uma Revisão de Literatura. (2023). Revista Naval De Odontologia, 50(1), 27-33. https://doi.org/10.29327/25149.50.1-5

Referências

1. Franco AP, Fernandes NLF, Oliveira LP. Anterior rehabilitation with CAD/CAM system: Case report. Nav Dent J. 2020;47(2):43-50.
2. Brand S, Winter A, Lauer HC, Kollmar F, Portscher-Kim SJ, Romanos GE. IPS e.max for all-ceramic restorations:clinical survival and success rates of full-coverage crowns and fixer partial dentures. Materials (Basel). 2019, 2;12(3):462.
3. Lien W, Roberts HW, Platt JA, Vandewalle KS, Hill TJ, Chu TM. Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic. Dent Mater. 2015; 31(8):928-40.
4. Wilard A, Chu TMG. The science and application of IPS e.MAX dental ceramic. Kaohsiung. J Med Sci. 2018; 34(4):238-242.
5. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorretntino R. Current status on lithiun dissilicate and zirconia: a narrative review. BMC Oral Health. 2019; 19(1):134.
6. Harada K, Raigrodski AJ, Chung KH, Flinn BD, Dogan Mancl LA. A comparative evaluation of the translucency of zirconia and lithium dissilicate for monolithic restorations. J Prosthet Dent. 2016;116(2):257-63.
7. Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci. 2015; 57(3):255-61.
8. Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int. 2013; 44(8):557-66.
9. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Residual stress measurement in veneering ceramic by hole-drilling. Dent Mater. 2011; 27(5):439-44.
10.  Rekow ED, Silva NRFA, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res. 2011; 90(8):937-52.
11.  Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Theree generations of zirconia: from veneered to monoliyhic. Part I. Quintessence Int. 2017;48(5):369-380.
12.  Tsukuma K, Yamashita I, Kusunose T. Transparent 8 mol% Y2O3–ZrO2 (8Y) Ceramics. J Am Ceram Soc. 2008; 91:813-818.
13. Motta BBM, Borges MAP, Dias ARC, Macedo MA. Influence of Ytrio percentage on monolithic zirconia properties: literature review. Nav Dent J. 2022; 49(2): 33-38.
14.  Zhang Y, Lawn BR. Evaluating dental zirconia. Dent Mater. 2018; 35(1):15-23.
15.  Zhang Y, Lee JJ, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013; 29(12):1201-8.
16.  Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B,Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):327-337.
17.  Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y. Graded Ultra-Translucent Zirconia (5Y-PSZ) for Strength and Functionalities. J Dent Res. 2018;97(11):1222-1228.
18.  Guess PC, Schultheis S, Bonfante EA, Coelho PG, Frrencz JL, Silva NRFA. All-ceramic systems: laboratory and clinical performance. Dent Clin North Am. 2011; 55(2):333-52.
19.  Aboushelib MN, Sleem D. Microtensile bond stregth of lithium dissilicate ceramics to resin adhesives. J Adhes Dent. 2014; 16(6):547-52.
20.  Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235.
21.  Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011;7(2):858–865.
22.  Cardoso KV, Adabo GL, Mariscal-Muñoz E, Antonio SG, Arioli Filho JN. Effect of sintering temperature on microstructure, flexural strength, and optical properties of a fully stabilized monolithic zircônia. J Prosthet Dent. 2019;S0022-3913(19) 30529-3.
23.  Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health. 2019;19(1):134.
24.  Yang Y, Yu J, Gao J, Guo J, Li L, Zhao Y, et al. Clinical outcomes of diferente types of tooth-supported bilayer lithium dissilicate al-ceramic restaration after functioning up to 5 years: a restrospective study. J Dent. 2016;51:56-61.
25.  Heintze SD, Monreal D, Reinhardt M, Eser A, Peschke A, Reinshagen J, et al. Fatigue resistance of all-ceramic fixed partial dentures - Fatigue tests and finite element analysis. Dent Mater. 2018;34(3):494-507.
26.  Obermeier M, Ristow O, Erdelt K, Beuer F. Mechanical performance of cement and screw-retained all-ceramic single crowns on dental implants. Clin Oral Investig. 2018;22 2):981-991.
27.  Baldissara P, Wandscher VF, Marchionatti AME, Parisi C, Monaco C, Ciocca L. Translucency of IPS e.max and cubic zirconia monolithic crowns. J Prosthet Dent. 2018;120(2):269-275.
28.  Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, et al. .  Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. J Dent. 2016;55:40-47.
29.  Nassary Zadeh P, Lümkemann N, Sener B, Eichberger M, Stawarczyk B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J Prosthet Dent. 2018;120(6):948-954.
30.  Sulaiman TA, Abdulmajeed AA, Donovan TE, Vallittu PK, Narhi TO, Lassila LV. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater. 2015;34: 605–610.
31.  Know SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and litjium dissilicate. J Prosthet Dent. 2018;120(1):132-137.
32.  Longhini D, Rocha C, de Oliveira LT, Olenscki NG, Bonfante EA, Adabo GL. Mechanical Behavior of Ceramicc. Monolithic Systems With Different Thicknesses. Oper Dent. 2019;44(5):244-253.
33.  Hatanaka GR, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent. 2020;123(2):330-337.
34.  Amer R, Kü D, Kateeb E, Seghi RR. Three-body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments. J Prosthet Dent. 2014;112(5):1151-5.
35.  Wang L, Liu Y, Si W, Feng H, Tao Y, Ma Z. Friction and wear of dental ceramics against natural tooth enamel. Jour of the Euro Ceram Soc. 2018;32(11):2599-2606.
36.  Ludovichetti FS, Trindade FZ, Werner A, Kleverlaan CJ, Fonseca RG. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J Prosthet Dent. 2018;120(2): 318.e1-318.e8.
37.  Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent. 2017;118(5):658-665.
38.  Calamia JR, Calamia C. Porcelain laminate veneers: reasons for 25 years of sucess. Dent Clin North Am. 2007;51(2):399-417.
39.  Beier US, Dumfahrt H. Longevity of silicate ceramic restorations. Quintessence Int. 2014; 45(8):637-44.
40.  Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2018; 85:57-65.

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 5 6 7 8 9 10 > >>